
1.  Introduction
Timely, accurate and reliable convective-scale severe weather forecasts remain a critical challenge for fore-
casters confronted with the responsibility of warning the public and stakeholders of imminent, potentially 
life threatening high-impact weather threats. In the past few decades, notable forecast improvements span-
ning a wide range of scales have been achieved owing in large part to notable strides in data assimilation (DA) 
techniques, as well as the increasing volume of available observations from different observing platforms. In 
the context of convection-allowing (3–4 km) to cloud scale (<3 km) forecasting, Doppler radar data (i.e., 
reflectivity factor and radial velocity) have been extensively studied and proved to be a critical component in 
today’s forecast operations. An inherent limitation of ground-based radar networks is that they are incapable 
of providing uniform observations across vast regions with inhomogeneous terrain (e.g., beam blockage; 
Maddox et al., 2002; Zhang et al., 2011) and over oceanic regions remaining outside the network’s range.

The assimilation of spaceborne total lightning (i.e., cloud-to-ground plus intracloud) observations is ex-
pected to complement radar data over such vast regions because of its wide coverage and its insensitivity to 
terrain (e.g., Pessi & Businger, 2009). The Geostationary Lightning Mapper (GLM) aboard the Geostationary 
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Operational Environmental Satellites Series-R (GOES-R, operationally known as GOES-16 and GOES-17 
for eastern and western sectors, respectively; Goodman et al., 2013; Gurka et al., 2006) provides a nearly 
uniform, 24-hr high spatial (∼8–14 km) and temporal resolution (20 s) total lightning data over the Amer-
icas (Goodman et al., 2013; Peterson, 2019; Rudlosky et al., 2019), including typically data sparse regions 
such as mountainous terrain and vast oceanic regions. Thus, GLM total lightning data have great potential 
for cloud-scale DA applications to improve forecasts of thunderstorm events, particularly when combined 
with other storm scale datasets such as, for example, ground-based radar data.

Pioneering works aimed at assimilating lightning in NWP models were primarily designed for parame-
terized convection scales (∼9–30 km) and employed cloud-to-ground (CG) flash data from ground-based 
networks (e.g., Alexander et al., 1999; Chang et al., 2001; Jones & Macpherson, 1997a, 1997b; Papadopoulos 
et al., 2005; Pessi & Businger, 2009) or combined CG flash with limited-area total lightning data (Mansell 
et al., 2007). The core concept behind their lightning data assimilation (LDA) method was to trigger the 
observed convection by boosting latent heating (and, hence, thermal buoyancy) within the columns or grid 
volumes where lightning was observed in the forecast domain.

The first attempt toward storm-scale (≤3  km) assimilation of total lightning was examined in Fierro 
et al. (2012, 2014). Instead of devising functional relationships between lightning and latent heating, Fierro 
et al. (2012) opted to make use of water vapor mass mixing ratio (qv). Rationale for selecting qv arises from 
its linkage with virtual potential temperature perturbation and hence thermal buoyancy. This simple LDA 
nudging method was tested over a 70-day sample period over the contiguous United States (CONUS) dur-
ing the spring of 2013, and notable forecast improvements in the timing and placement of convection were 
seen (Fierro et al., 2015). Similar forecast improvements were also documented by parallel research efforts 
considering either sub-cloud warming (Marchand & Fuelberg, 2014) or adjusting latent heating derived 
from microphysical quantities/variables (graupel mass, radar reflectivity) to boost convection at observed 
lightning locations (Wang et al., 2017).

The lightning nudging scheme of Fierro et al. (2012) was later adapted for use in the three-dimensional 
variational (3DVAR) framework (Fierro et al., 2016) and within the Gridpoint Statistical Interpolation (GSI) 
framework (Fierro, Zhao, et al., 2018). More recently, Fierro et al. (2019) and Hu et al. (2020) adapted the 
3DVAR LDA technique for operational GLM data and evaluated their impact on short-term forecasts of 
high-impact convective events that primarily occurred over the southern Great Plains of the Unites States.

Auxiliary research efforts explored ensemble Kalman filters (EnKF) to assimilate total lightning informa-
tion (Allen et al., 2016; Mansell, 2014). A recent study (Kong et al., 2020) adopting the graupel-based for-
ward operator of Allen et al. (2016) to assimilate GLM data in the GSI-EnKF framework revealed notewor-
thy forecast improvements for a retrospective high-impact mesoscale convective event.

Building upon the earlier works of Fierro et al. (2019) and Hu et al. (2020), this research aims to assess 
more systematically the assimilation of GLM total lightning data for forecasts conducted daily in real time 
settings over a 5-week period and covering a notably wider forecast domain (i.e., beyond regional scales) 
encompassing the entire CONUS and surrounding territories. These real time simulations were conducted 
as part of the 2020 NOAA Hazardous Weather Testbed (HWT) Spring Forecasting Experiment (SFE). The 
cloud-scale DA component employed a 3DVAR package developed at the National Severe Storm Laboratory 
(NSSL). A 3DVAR approach was used due to its lower computational burden and, therefore, its ability to 
provide operational forecasters with a faster delivery of forecast products.

The systematic evaluations herein place emphasis on short-term (≤6-hr) quantitative precipitation fore-
casts (QPFs) over the whole CONUS, including both areas characterized by good radar coverage (eastern 
two thirds of CONUS) and poor radar coverage (western one third of CONUS). For completeness, 6–12 hr 
forecasts are also evaluated as needed. For this assessment, four experiments were devised: a baseline “ref-
erence” simulation (labeled REF) complemented by experiments assimilating, individually GLM lightning 
data (GLM), radar observations (RAD), and both datasets combined (GLM + RAD)—all using REF as back-
ground. In other words, all cycled DA experiments begin with the same background data (from REF) and 
with the same boundary conditions when initiating a forecast. To the best of the authors' knowledge, this is 
a first effort aimed at systematically assessing the added value of operational GLM lightning data over the 
whole CONUS in real time settings using an operational convection-allowing model configuration.
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2.  The 3DVAR Analysis and Forecast System and Data Used for the DA
2.1.  The Forecast Model

The forecasts utilized the Advanced Research Version of the Weather Research and Forecasting model ver-
sion v3.9 (WRF-ARW, Skamarock & Klemp, 2008) adopted in the fourth generation high-resolution rapid 
refresh model (HRRRv4) by NOAA's Global Systems Laboratory (GSL). The SFE mimicked the operational 
settings of HRRRv4, using the same version of the WRF-ARW forecast model adopted in HRRRv4 togeth-
er with the same physics parameterizations, namely: the Thompson “aerosol aware” bulk microphysics 
scheme (Thompson et al., 2008), the Mellor-Yamada-Nakanishi-Niino level 2.5 (MYNN2) planetary bound-
ary layer (PBL) scheme (Nakanishi & Niino, 2006; Olson et al., 2019), the Rapid Update Cycle (RUC) land 
surface scheme (Benjamin et al., 2004; Smirnova et al., 2016), and the longwave (LW) and shortwave (SW) 
radiation schemes from Rapid Radiative Transfer Model for General Circulation Models (RRTMG; Iacono 
et al., 2008). No cumulus parameterization is employed.

2.2.  The 3DVAR System

The 3DVAR DA framework used herein was originally developed for the Advanced Regional Prediction 
System at the Center for Analysis and Prediction of Storms and later upgraded at NSSL (Wang et al., 2019). 
Besides the capability of assimilating surface observations, radar radial velocity and its derived velocity–az-
imuth display (VAD) wind observations (Gao et al., 2004; Hu et al., 2006), this convective-scale DA scheme 
directly assimilates radar reflectivity with a forward operator classifying the hydrometer species based on 
background temperature (Gao & Stensrud, 2012; Gao et al., 2013). The 3DVAR DA system is under contin-
uous development to assimilate a broader range of observations, such as satellite derived Cloud Water Path 
(CWP), ground based or spaceborne lightning data (Fierro et al., 2016; Hu et al., 2020), total precipitation 
water (Pan et al., 2018), as well as radar-derived pseudo-observations for qv from vertical integrated liquid 
water (Lai et al., 2019).

2.3.  The Data Set

The datasets used in this study include radar measurements from the US National Weather Service (NWS) 
operational Weather Surveillance Radar-1988 Doppler (WSR-88D) network and total lightning observations 
from the GLM aboard GOES-16.

The level II radar data (i.e., radar reflectivity factor and radial velocity) from the WSR-88D network (e.g., 
Gao et al., 2013; Zhang et al., 2011) and radar-derived VAD wind observations from a total of 143 radar sites 
covering the CONUS were used. Before being interpolated onto the model grid for the DA, the radar data 
were quality controlled (QC-ed) through a procedure outlined in Gao et al. (2013) that includes the removal 
of weak or nonmeteorological radar echoes and radial velocity dealiasing. For a given grid point wherein 
data from multiple radars overlap, the largest observed reflectivity value is selected for the DA. Radial ve-
locity and VAD observations are also assimilated to adjust the wind components, and radar reflectivity data 
are used to adjust the mass mixing ratios for snow (qs), rainwater (qr), and hail (qh) based on temperature 
thresholds (Gao & Stensrud, 2012).

The GLM instrument aboard the GOES-16 and GOES-17 satellites detects lightning activity 24/7 at a 2 ms 
frame rate across the Americas and adjacent oceanic regions, with a 24hr-average detection efficiency ex-
ceeding 70% (Edgington et al., 2019; Goodman et al., 2013; Mach, 2020; Rudlosky et al., 2019). The GLM 
provides the QC-ed and filtered “level 2” total lightning data in 20-s packets at a horizontal grid spacing 
ranging from about 8 km near the center of the field of view to about 14 km farther away near the edges 
(Goodman et al., 2013). The elemental variable provided by the GLM data directly related to lightning flash-
es is the pixel-level lightning optical energy “event”. Based on temporal and spatial coincidence thresholds, 
events are combined into groups and further into flashes through a parent-to-child relationship (Mach 
et al., 2007). In this work, only GLM “flash” data are used to approximate total flash origin densities on 
the model grid. Following earlier studies (Fierro, Stevenson, & Rabin, 2018; Fierro et al., 2019), the areal 
footprint/extent of lightning flashes is purposively not considered in this study to reduce the impact of the 
LDA-induced qv adjustments outside convection regions.
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The GLM DA scheme and settings employed in this study are conceptually the same as those in Hu 
et al. (2020). Prior to each 3DVAR analysis, the 20-s GLM data packets recording the latitude-longitude co-
ordinates of the flash pixel centroids were accumulated over a predetermined time interval (here, 10 min). 
At each observed GLM centroid horizontal location, pseudo-observations for qv are created by adjusting 
the background qv within a fixed depth (3 km) above the LCL toward near saturation conditions (set to a 
relative humidity of 95% herein, i.e., qv = qvsat × 95%). Afterward, these GLM-derived pseudo-observations 
for qv are directly assimilated into the 3DVAR system. This DA procedure is independent of flash rate and 
is only applied to any qualifying grid points if the modeled (i.e., background) relative humidity is less than 
95%. Areas with zero GLM-observed gridded hourly flash are treated as missing observations, and the pseu-
do-observations for qv are not created. Additional details pertaining to the LDA scheme and the 3DVAR 
parameters used are provided in Hu et al. (2020).

Ongoing preliminary observational work revealed that, overall, the vast majority of lightning optical emis-
sions detected by GOES-16 over CONUS overlaps with those from GOES-17 (Rudlosky & Virts, 2021). Be-
cause the current lightning DA scheme does not consider flash rates, only GOES-16 data were utilized 
herein. The inclusion of GOES-17 lightning data will be deferred to forthcoming studies especially in the 
advent that a lightning observation operator emphasizing flash density rate is considered during the DA 
(e.g., Fierro et al., 2012; Kong et al., 2020).

Although both the GLM and WSR-88D data can be publicly obtained from online NOAA databases such as 
those provided by the National Centers for Environmental Prediction (NCEP), these datasets were fed in 
real time into the experimental simulations from a large public data repository made available to research-
ers and collaborators on the Jet NOAA high performance computing cluster.

3.  Experimental Design
3.1.  General Set Up

To provide forecasters with daily forecast products consistent with other ongoing experiments during the 
SFE, the simulation domain follows the guidelines from the Community Leveraged Unified Ensemble 
(CLUE; Clark et  al.,  2018; Figure  1), which is characterized by horizontal dimensions in grid points of 
1620  ×  1120 and a uniform horizontal grid spacing of 3  km (or 4860  ×  3360  km2). The domain uses a 
stretched vertical grid with 51 levels extending from the surface up to 15 hPa. The integration time step is 
20 s.

Figure 1.  Simulation domain (3-km grid spacing) with (a) the gray shading indicating the area where the forecast evaluation was performed over the CONUS, 
and (b) the gray-shading delineating the area referred to as the eastern two thirds of CONUS in the text.
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Owing to technical problems occasionally encountered during the 
5-week duration (from 27 April to 29 May) of the SFE including system 
maintenance, node failure/network outages, unavailability of critical in-
put data, complete runs are available for 29 days out of a target maximum 
of 33 days (Figure 2). Each day, the GLM and/or radar DA was performed 
between 2300 and 0000 UTC using a 15-min 3DVAR cycling frequency 
(Figure 3). At each analysis step, data accumulated within a 10-min time 
interval prior to the analysis time t (i.e., from t-10 min to t) are assimilated 
(following Hu et al., 2020). Following the 1-hr 3DVAR DA period, a 12-hr 
deterministic forecast was launched at 0000 UTC.

The background at the initial DA step (2300 UTC) was the 2-hr forecast 
from the fifth generation Rapid Refresh (RAPv5) initialized at 2100 UTC. 
When launching the forecast at 0000 UTC, boundary conditions are also 
based on RAPv5 forecasts initialized at 2100 UTC (available in real time 
on the Jet clusters). The forecast output data in the real time experiments 
were saved hourly throughout the 12-hr forecast period.

During the daily evaluation performed by operational NWS forecasters and participants, the SFE focused 
on two (out of the four) experiments, namely the RAD and GLM + RAD to focus on the added value of 
the GLM lightning relative to the more conventionally assimilated WSR-88D radar data. Each day, three 
on-demand custom evaluation domains were selected based on the observed total GLM lightning densities 
during the DA period (2300-0000 UTC). Furthermore, to better assess the added benefits of GLM lightning 
data and/or radar data over a deterministic forecast without assimilating GLM lightning or radar data, two 
additional experiments—namely REF and GLM—were conducted in real-time and examined offline.

3.2.  Performance Evaluation: Methods and Data

Akin to Fierro et al. (2015), the performance evaluation is focused on short-term QPFs. Composite reflec-
tivity fields were also examined but revealed, overall, very similar results in terms of forecast skill as for the 
QPFs and, hence, are not shown. The QPFs are evaluated against hourly rainfall quantitative precipitation 
estimates (QPEs) from NCEP's Stage IV (UCAR, 2020) product (Baldwin & Mitchell, 1997; Lin & Mitch-
ell, 2005; Nelson et al., 2016), with a native polar stereographic grid spacing of 4 km across the CONUS. 
Independent studies showed that the fused Stage IV estimates generally outperform radar-only and ra-
dar-gauge products that did not undergo a separate manual quality control (Gourley et al., 2010; Westcott 
et al., 2008), which accounts for its wide usage in modeling studies to evaluate precipitation products (Smal-
ley et al., 2014). Because of its more systematic usage for model verification over the years, the Stage IV 
QPE data were selected over the NSSL Multi-Radar/Multi-Sensor (MRMS) QPE product (Smith et al., 2016; 
Zhang et al., 2011). We expect the forecast verification results to be relatively similar using either product, 

especially given that forecasts metrics aggregated over a month period are 
emphasized herein.

Before performing the comparison between observations and forecasts, 
the 4-km Stage IV QPFs were interpolated onto the 3-km grid of the sim-
ulation domain. Contingency-table measures including the probability of 
detection (POD), the false alarm ratio (FAR) together with the success 
ratio (SR  =  1-FAR), the frequency bias (BIAS), the critical success in-
dex (CSI) as well as equitable threat score (ETS, e.g., Clark et al., 2010; 
Wilks,  2006) were calculated for hourly accumulated precipitation 
(HPRCP) forecasts relative to the Stage IV rainfall estimates. Their cal-
culations are based on the standard 2  ×  2 contingency table elements 
(Table 1) and are as follows:

POD /hits hits misses  N N N_ _ _� (1)

Figure 2.  April–May 2020 calendar showing the sample of forecast days 
that were used in this work (gray shading, totaling 29 days) and, in white, 
the forecast days (in May) that were not part of the forecast sample owing 
to technical issues encountered during the real time experiment.

Figure 3.  Data assimilation (DA) and forecast flow chart.
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FAR /_falsealarm _total  N N� (2)

SR FAR /hits _total    1 N N_� (3)

CSI /_hits _total _misses  N N N� (4)

BIAS /_total _hits _misses    N N N� (5)

ETS /_hits _total misses     N S N N S_� (6)

S N N N N N N

N

      _ ,hits _misses _total _total _misses _reject/

__total _hits _falsealarm N N�

where N_total is the number of forecasted events and the parameter S in 6 represents the number of hits fore-
casted at random N_total times. All other variables are described in Table 1. As formulated, the ETS ranges 
from −1/3 (no skill) to 1 (perfect skill).

The scores were calculated for a series of neighborhood radii ranging from 3 km (grid point based) to 39 km 
by an increment of 3 km for the following thresholds: 1, 2.5, 5, and 10 mm. By considering adjacent grid 
points within a specified radius of a given grid point, a neighborhood-based index relaxes the conditions 
required to qualify an event as a hit. That is, given a radius r and at grid point j, if an event is observed at j, 
it is a hit if the event is forecast at j or any grid point within radius r of grid point j, otherwise it is a miss.

Additionally, the performance evaluation made use of the normalized mean square error (NMSE) defined 
as follows:

NMSE /  E H E H[|| || [|| ||( ) ] ( ) ]x y x y
f o f o2 2� (7)

where E[.] is the expected value over a given domain area, xf is the forecast, and yo is the observation vector.

To investigate in more detail the forecast performance on a case-to-case basis, the composite reflectivity 
(CREF) forecasts were compared against CREF observations from the MRMS product (Smith et al., 2016; 
Zhang et al., 2011). The MRMS CREF data were retrieved from a local server (vMRMS) at NSSL with a 
horizontal grid spacing of 0.01° and are available in 5-min increments. Akin to the Stage IV data, the MRMS 
CREF fields were interpolated onto the 3-km model grid prior to performing the comparison.

4.  Results
4.1.  Statistical Evaluation

To gain an overall appreciation of the rainfall forecast skill throughout the 2020 SFE evaluation period, 
the forecast evaluation measures listed earlier were computed for hourly rainfall aggregated over all 29 
forecast days. The POD, FAR, CSI, and BIAS were examined simultaneously using performance diagrams 
(Roebber, 2009).

For each of the four experiments, performance diagrams aggregated over all 29 forecast days over the entire 
CONUS (i.e., regions with valid stage IV data, Figure 1a) for hourly QPF at 1, 3, and 6-hr forecast are pre-
sented in Figure 4. Because, overall, the relative performance of each of the four experiments was similar for 
the neighborhood radii selected, only the results for a neighborhood radius of 18 km are shown.

An aggregate, domain-wide general improvement in forecast skill over REF can be seen for all DA runs 
(Figure 4), with the best results obtained for GLM + RAD. For all four experiments, the forecast skill for 
hourly QPF peaks at 1-hr forecast and progressively decreases afterward, as evidenced by decreasing POD, 

Event observed

Yes No

Event forecast Yes N_hits N_falsealarms

No N_miss N_reject

Table 1 
A 2 × 2 Contingency Table for Forecasting of Events, Where N_hits: The 
Number of Correct Forecasts of Events (Hits), N_falsealarms: The Number 
of Forecasts of Events That did not Occur (False Alarms), N_miss: The 
Number of Events That Occurred but Were not Forecasted (Misses), N_
reject the Number of Correct Forecasts for the Events That did not Occur 
(the Number of Correct Rejections)
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decreasing CSI and increasing FAR, especially at higher rainfall thresholds (i.e., 5 and 10 mm hr−1). Despite 
these improvements, rainfall totals were generally overestimated by all DA experiments and, arguably, even 
by the REF run (BIAS > 1 in Figure 4). This overestimation worsens with increasing threshold and appears 
to be the largest for the two GLM-based experiments. Consistent with this result, statistics for CREF fore-
casts relative to MRMS CREF products shows an overall overprediction, especially for thresholds exceeding 
30 dBZ (not shown). This result strongly suggests that the forecast model has a tendency to overpredict the 
strength and/or areal coverage of late afternoon convection, which might not only be partially attributed to 
bias and errors in initial and boundary conditions, but to errors in the physical processes associated with 
convective precipitation (e.g., by the Thompson microphysics, Fierro et al., 2015).

Comparing the relative aggregate forecast performances of GLM over REF and GLM + RAD over RAD 
reveals that the QPFs generally benefit from the GLM data during the assimilation (e.g., higher POD) at the 
expense, however, of exacerbating any existing wet biases, similar to previous qv-based LDA studies (Fierro 
et al., 2015). Figure 4 shows that in fact, at higher rainfall thresholds, the REF run already exhibits increas-
ingly wetter biases. Future research efforts could, for instance, adopt a qυ conservation approach (Fierro 
et al., 2019) or explore alternatives aimed at specifically targeting convective core areas prior to applying 
the lightning-induced moisture adjustments. To better assess the tendency of the present DA method to 
generate wet biases in the forecasts, additional, off-line, GLM DA experiments (not shown) were performed 
using the same 3DVAR DA flowchart as in Figure 3 but over a 24-hr period instead of 1-hr (prior to 00UTC). 

Figure 4.  Performance diagrams for 1- (a–d), 3- (e–h), 6- (i–l) hourly accumulated precipitation (HPRCP) forecasts relative to Stage IV hourly rainfall data 
aggregated over all 29 cases (Figure 2) across the CONUS (the gray-shading area in Figure 1a) for HPRCP thresholds of 1 mm (a, e, i), 2.5 mm (b, f, j), 5 mm (c, 
g, k), and 10 mm (d, h, l). The results are presented for a neighborhood radius of 18 km. The upper-right corner of each plot represents perfect forecast skill and, 
conversely, the lower-right corner no skill. The thin purple curves show the critical success index (CSI), and the thin diagonal black lines the frequency bias 
such that dots located on the y = x diagonal indicate a forecast devoid of bias (i.e., frequency bias of unity).



Journal of Geophysical Research: Atmospheres

HU ET AL.

10.1029/2021JD034603

8 of 21

These experiments purposively targeted (here 3) days in the SFE samples containing the largest amount of 
GLM observed lightning. In addition to the notable increase in computational burden incurred by the 24- 
fold increase in 3DVAR analyses, the results revealed that not only the frequency biases remained relatively 
similar to that of the 1-hr cycling experiment but also that the forecast skill was generally degraded for both 
rainfall and CREF. This degradation in forecast skill with increasing number of 3DVAR cycles is in part like-
ly attributed to the successive introduction in each DA cycles of errors already contained in the larger scale 
model, and reanalysis/forecast datasets used to derive the background fields for each successive 3DVAR 
analysis. Wet biases also arise from the systematic development of spurious convection, which motivates 
further refinements to the present DA method to address this drawback by assimilating, for example, zero 
lightning observations (Lai et al., 2019; Kong et al., 2020).

Though the Stage IV QPEs are regarded as one of the best observational rainfall datasets covering CO-
NUS, QPEs of Stage IV are underestimated over the mountainous west due to beam blockage (e.g., Smalley 
et al., 2014). To partially take this into account, the performance diagrams over the eastern two thirds of 
CONUS (gray shading in Figure  1b) were examined separately but generally revealed similar aggregate 
performance improvements relative to the whole CONUS (Figure 3). This is because during the 1-hr DA 
period, the overwhelming majority of the lightning activity occurred over the eastern two thirds of CONUS 
(see later in the section). Slightly improved aggregate forecast skill is obtained over the eastern two thirds of 
CONUS as corroborated by higher POD, SR, and CSI (Figure 5), but lower BIAS values.

Statistics for forecast lead times beyond 6-hr (not shown) shows and confirms that any improvements/
gains induced by the assimilation of either lightning or radar data are gradually lost. One relevant and 
atypical aspect of this evaluation is the overall good aggregate performance of the REF experiment (POD 

Figure 5.  Same as Figure 4 but for precipitation data covering the eastern two thirds of CONUS only (cf. Figure 1b).
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ranging between 0.55 and 0.7, Figures 4 and 5). This is because, as mentioned earlier, the RAPv5 product 
operationally used by GSL already contains blended information from many observing platforms, including 
temperature, moisture and wind observations from rawinsonde, surface stations and aircrafts, WSR-88D 
radar reflectivity and radial wind, proxy reflectivity converted from National Lightning Detection Network 
(NLDN) lightning flash rate data, GOES atmospheric motion vectors (AMVs), among others (cf. Table 4 in 
Benjamin et al., 2016 for details). Although forecast improvements might be more challenging to achieve 
in this context, the RAPv5 was intentionally utilized herein to mimic GSL's operational settings with the 
HRRR. Daily evaluation with SFE participants revealed that the overall good performance of REF was 
most evident for strongly forced systems (higher predictability, not shown). Consequently, improvements 
induced by the GLM DA were more readily seen for convective events associated with weak forcing (cf. 
individual case analyses below).

The aggregate ETSs for hourly rainfall generally agree well with the performance diagrams. All DA ex-
periments produce higher aggregate ETSs than REF (Figure 6) at 1–6 hr forecasts. The ETSs also decrease 
with time, but the relative differences in scores at 1-hr forecast still persist between experiments until 6-hr. 
Except for REF, all DA experiments exhibit a notable decrease in ETS during the first two hours of forecast. 
GLM + RAD produces overall the best forecast skill for thresholds of 1, 2.5 and arguably of 5 mm (Fig-
ures 6a–6c). This result does not hold for the 10 mm threshold and is partially attributed to fewer occurrenc-
es of strong convection in both the forecast and verification datasets.

4.2.  Spatial Evaluation

To illustrate more concisely the differences in spatial distribution of QPFs between each of the four exper-
iments, the 0–6 hr rainfall summed over all 29 forecast days is examined herein. For this analysis, the total 
flash density rate used during the DA period aggregated over all 29 days is conjointly analyzed with the 
rainfall to help better depict areas where the GLM DA produced the most noticeable impacts (Figure 7a).

From Figure 7, it becomes clear that two GLM runs, that is, GLM and GLM + RAD, produce notably more 
rainfall than either RAD or REF, especially offshore over southeastern Florida, southwestern Texas, extreme 
northeastern Mexico, the southern Great Plains, and western CONUS. Coincidentally, all these areas collo-

Figure 6.  Equitable threat scores (ETS) for 1–6 hr HPRCP forecasts relative to Stage IV hourly rainfall estimates 
aggregated over all 29 cases (Figure 2) over the CONUS (gray-shading area in Figure 1a) for hourly thresholds of (a) 1 
(b) 2.5, (c) 5, and (d) 10 mm. As in Figures 4 and 5, the results are shown for a neighborhood radius of 18 km.
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cate well with the areas of largest aggregate GLM flash densities (Figure 7a). When directly comparing the 
rainfall maps for GLM and GLM + RAD against the Stage IV data, it becomes also evident that the rainfall 
totals over the above regions of the forecast domain are overestimated. This systematic overestimation in 
QPF for the GLM-based runs is consistent with the aggregate wet biases documented in Figures 4 and 5. 
The larger amounts of precipitation added in the GLM-based experiments relative to the RAD DA forecasts 
is undeniably partially attributed to the moisture-based LDA strategy, and this despite efforts to confine 
qv adjustments vertically in a 3-km deep layer and spatially with a horizontal decorrelation length scale 
on the order of 1 grid point (3 km). The other two experiments–RAD and REF–generally exhibit smaller 
differences relative to the Stage IV QPE but tend to underestimate rainfall over the mountainous areas and 
radar sparse regions of the west. During the SFE, there were repeated occurrences of convective weather 
events over western/southwestern Texas, echoed by an abundance of GLM lightning there (Figure 7a). On 
the aggregate, REF severely underestimated the precipitation over western Texas with RAD offering some 
slight improvement that still remained well below the Stage IV estimates.

To get a quantitative assessment of quality of the QPFs from each experiment, the NMSE relative to Stage 
IV QPEs was computed together with the NMSE skill score relative to REF. Table 2 lists the NMSE values of 

Figure 7.  Total GLM flash density used during the DA between 2250 and 0000 UTC (a), presented side-by-side with differences of total 6-hr accumulated QPFs 
between (b) REF (c) GLM (d) RAD (e) GLM + RAD and the Stage IV QPE. The GLM flashes and QPF are accumulated over all 29 cases herein. The total flash 
density rate employed for the DA in (a) is defined as the sum of all 10-min GLM flash accumulation intervals that were used for each 3DVAR cycle between 
2300 and 0000 UTC, namely: 2250–2300, 2305–2315, 2320–2330, 2335–2345, and 2350–0000 UTC.

Domain REF GLM RAD GLM + RAD

CONUS 0.451 0.436 (0.033) 0.435 (0.035) 0.426 (0.055)

Western one third 0.481 0.466 (0.031) 0.487 (−0.012) 0.475 (0.012)

Eastern two thirds 0.439 0.425 (0.032) 0.414 (0.057) 0.407 (0.073)

Note. Calculations are for the 6-hr accumulated rainfall, the numbers in the parentheses are the NMSE skills scores 
with respect to the REF experiment, that is, NMSE skill of GLM = 1-NMSE(GLM)/NMSE(REF).

Table 2 
NMSEs of Each Experiment Relative to the Stage IV Product, Averaged Over the Whole CONUS, the Western One Third 
and Eastern Two Thirds of CONUS
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each experiment averaged over: the whole CONUS, the eastern two thirds 
of CONUS, and the western one third of CONUS. The NMSE skill score 
of experiment X relative to experiment REF is given by:

NMSE skill core NMSE /NMSE REFX X       1� (8)

where X refers to either GLM, RAD, or GLM + RAD.

Overall, GLM and radar data help reduce the QP deviations from the 
Stage IV product, with GLM + RAD showing the smallest error over the 
whole CONUS and, by extension, the eastern two-third of CONUS. For 
the western one third of CONUS, due to the relatively smaller amount 
of reliable radar data, RAD produces similar forecasts as REF. This anal-

ysis reveals that GLM generally slightly outperforms RAD and GLM + RAD over the western one third of 
CONUS, highlighting the added value of GLM lightning data over radar-sparse areas. Complementing the 
NMSE statistics, Table 3 underscores that the forecast skill and NMSE improvements are accompanied by 
CONUS-wide aggregate wet biases on the order of 0.32 mm for the GLM-based experiments, which are 
largely attributed to the excess rainfall induced by the LDA in the lightning-active, eastern 2/3rd region of 
CONUS. Biases in this region are about an order of magnitude larger there compared to the western 1/3rd 
region (Table 3). Auxiliary analysis (not shown) revealed that the positive differences in 29-day aggregate 
rainfall in excess of 50 mm for the GLM-based runs (Figures 7c and 7e)—nearly all of which collocated 
within regions of GLM hourly flash rates exceeding ∼2 (Figure 7a)—were generally associated with positive 
differences in z = 3–7 km or z = 1–5 km layer averaged qv (29-day aggregate) on the order of 0.1–0.45 g kg−1 
(not shown).

Hovmöller (time-longitude) diagrams of latitudinally averaged hourly precipitation fields aggregated over 
all 29 forecast days were constructed for each of the four experiments and the Stage IV QPE. For reference, 
the latitudinally averaged total GLM flash density used for the DA between 2250 and 0000 UTC is also ex-
amined. As anticipated, the Hovmöller diagrams corroborate the results from the spatial rainfall maps in 
Figure 7 relatively well. All four experiments exhibit a longitudinal distribution of precipitation forecasts 
that is overall consistent with the Stage IV estimates, with heavy precipitation dominating the eastern two 
thirds of the United States. The underestimation of rainfall by REF over western Texas discussed earlier 
(Figure 7b) can also be seen here (Figure 8b) together with the slight improvements offered by RAD (Fig-
ure 8d). Most importantly and corroborating the results in Table 3, this analysis highlights even further the 
tendency of the GLM DA to generate notably more precipitation during the first 2–3 h forecasts (Figures 8c 
and 8e), especially over the eastern two thirds of CONUS where the bulk of the observed lightning activity 
used for the DA occurred (Figures 8a and 8f).

In sharp contrast to the QPFs over the eastern two thirds of CONUS (Figure 8f), notably less precipitation 
and, thus, lightning activity occurred in the western one third of CONUS (Figure 9). A closer inspection 
of the Hovmöller diagrams over the western one third of CONUS (Figure 9) illustrates that—similar to the 
eastern two thirds of CONUS (Figure 8)—the GLM DA adds more precipitation during the first 2–3 hr fore-
casts. The Hovmöller plots over the west (Figure 9), however, illustrate that notably less rainfall was added 
overall by the GLM-based experiment (consistent with Table 3), owing to the weaker convective nature of 
the storms over the west (and, hence, a smaller areal coverage of the lightning density field). When com-
paring the rainfall amounts to the Stage IV QPE over the CONUS area west of 121°W, an underestimation 
is noted in all four experiments. Given that the Stage IV amounts themselves likely represent an underes-
timate of the true rainfall amounts owing to poor radar coverage (beam blockage), it is likely that the QPF 
underestimates might be even more pronounced than shown in Figure 9. This analysis illustrated that while 
the QPFs from the GLM-based experiments are generally overestimated over most of the lightning-active 
areas in the eastern two thirds of CONUS, the GLM-based runs underestimate the QPFs over the western 
one third of the country, especially areas west of 121°W–highlighting the inherent difficulties in developing 
an optimal observation operator.

Domain REF GLM RAD GLM + RAD

CONUS 0.152 0.328 0.154 0.321

Western one third 0.036 0.073 0.028 0.064

Eastern two thirds 0.183 0.437 0.188 0.429

Note. Calculations are for the 6-hr accumulated rainfall.

Table 3 
Mean Bias (mm) of Each Experiment Relative to the Stage IV Product, 
Averaged Over the Whole CONUS, the Western One Third and Eastern 
Two Thirds of CONUS



Journal of Geophysical Research: Atmospheres

HU ET AL.

10.1029/2021JD034603

12 of 21

4.3.  Individual Cases

Complementing the general evaluation and aggregate statistics in the previous sections, this analysis is 
aimed at examining in greater detail individual representative cases on the regional scale in both the ra-
dar-rich (eastern two thirds of CONUS) and radar-sparse regions (western one third of CONUS) of the 
CLUE domain. Emphasis is placed here on the CREF and QPFs evaluated against observations from the 
MRMS and Stage IV product, respectively. For rainfall, accumulated total GLM flash density maps up to the 

Figure 8.  Time longitude (Hovmöller) diagrams of latitudinally-averaged precipitation averaged over all 29 cases along the longitudinal belt outlined by the 
gray-shading area (mask) in Figure 1a for (a) Stage IV rainfall estimates, (b) REF, (c) GLM, (d) RAD, and (e) GLM + RAD. The latitudinally averaged GLM flash 
density used during the DA between 2250 and 0000 UTC are provided in (f), for reference.

Figure 9.  As in Figure 8, but aggregated over the western one third of the CONUS for the longitudinal belt between −124° and −106°.
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forecast time were used as reference to pinpoint swaths where the heaviest rainfall is expected to occur. To 
better identify areas where storms were most likely triggered by the LDA, the CREF analysis employs maps 
of the total GLM flash densities used during the DA (2250–0000 UTC)

4.3.1.  30 April 2020 Case Over the Northwestern United States

On 30 April 2020, widespread convection developed over the northwestern states including Oregon, Idaho, 
Montana, and Nevada (Figure 10a).

For this particular case, the REF run shows an overall poor forecast performance especially over south-
central/southwestern Idaho and northeastern Nevada. Although some storm cells were forecasted by REF 
in northwestern Idaho and northeastern Oregon, their structure, orientation and areal coverage differ no-
tably from the MRMS CREF observations (Figure 10b). Due to an overall sparser radar coverage over the 
northwestern U.S., RAD showed negligible impact in forecasting the observed convection relative to REF 
(Figure 10d) and this despite being able to partially capture some of the storms near the Idaho and Montana 
border as well as southcentral Idaho. For this radar-data sparse region, Figure 10f highlights the benefit of 
the GLM, which is able to monitor a reasonable portion of the lightning activity there (Rudlosky et al., 2019) 
and, hence, the presence of deeper mixed-phased convection. By adjusting the background moisture around 

Figure 10.  MRMS composite reflectivity (CREF) observations (a) and forecast CREF fields for (b) REF, (c) GLM, (d) RAD, and (e) GLM + RAD at 0100 UTC 
(1-hr forecast) for 30 April 2020. The GLM flash density used during the DA between 2250 UTC 29 April 2020 and 0000 UTC 30 April 2020 are also shown in (f), 
for reference. The standard US states abbreviations are also indicated in (c) for reference.
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lightning locations, the GLM-based DA experiments are able to notably improve the forecast (Figures 10c 
and 10e). The shape, location, orientation, and areal coverage agree overall remarkably well with the ob-
served storms. When establishing a direct comparison with the MRMS CREF observations, one notices a 
relative overestimation in the CREF fields, which might partially be attributed to underestimates in the 
observed CREF fields due to beam blockage.

As also revealed by the aggregate statistics, the QPF performance is in accord with that of the CREF fore-
casts. Both REF and RAD severely underestimated the 6-hr accumulated precipitation over the northwest-
ern CONUS (Figures 11b and 11d). In contrast, the two GLM-based experiments notably improved the fore-
cast skill for 0–6 hr precipitation (Figures 11c and 11e), as evidenced by a relatively good agreement with the 
Stage IV estimates in terms of amounts and location. The location and areal coverage of the 6-hr QPF from 
both GLM-based runs agree well with the 0–6 hr accumulated GLM flash density fields, underlining further 
that, for this case, the improvements in 6-hr QPFs were primarily attributed to the inherent advantages of 
the GLM over mountainous terrain.

Figure 11.  The total 6-hr (0000 UTC to 0600 UTC 30 April 2020) QPE for (a) Stage IV, and QPFs for (b) REF, (c) GLM, (d) RAD, and (e) GLM + RAD. The 6-hr 
accumulated (total) GLM flash densities during the 6-hr QP accumulation period are also shown to highlight areas of convectively active weather and, hence, 
heaviest rainfall potential.
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4.3.2.  11 May 2020 Case Over the Southwestern United States

On 11 May 2020, scattered storms formed across the southwestern U.S., over portions of Nevada, southeast-
ern California, Arizona, Utah, New Mexico and western Texas (Figure 12a). Over that broad area, REF and 
RAD only produce scattered weak radar echoes (Figures 12b and 12d). When assimilating the GLM obser-
vations (Figure 12f), the simulation is able to capture most of the observed storms (Figures 12c and 12e) 
despite a slight overestimation of areal coverage and intensity (Figures 12c and 12e). Similar to 30 April 
2020, this overestimation might be attributed to an underestimation of the observed CREF values due to 
beam blockage

All DA experiments were generally able to capture the observed 6-hr rainfall over northeastern New Mexico. 
Over northwestern Arizona, however, REF and RAD underestimate their amounts (Figures 13b and 13d) 
while, in contrast, the GLM-based induced QPFs are slightly overpredicted (Figures 13c, 13e and 13f). Sim-
ilar to CREF, it is reasonable to assume that—despite the lack of observations for verification—the QPFs 
over northeastern Mexico are more faithfully captured by the GLM-based experiments than either REF or 
RAD given the abundance of lightning detected by the GLM there and the lack of convective CREFs pro-
duced by either RAD or REF.

Figure 12.  As in Figure 10 but for 11 May 2020.
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4.3.3.  6 May 2020 Case Over Eastern CONUS

The above two cases provided illustrative examples of the added benefit of GLM total lightning data in radar 
sparse areas. Although relatively infrequent during this SFE, the following case will illustrate that even in 
areas characterized by good radar coverage (eastern two thirds of CONUS in Figure 1), the inclusion of the 
GLM was able on some rarer occasions to still prove beneficial.

During the early evening hours on 6 May 2020, strong storms affected most of the Carolinas. The 6-hr 
QPF and 3-hr CREF forecasts (Figures 14 and 15) highlight rather nicely the superiority of the GLM-based 
experiment for this case. The GLM DA is able to better resolve the upscale growth of the quasi-linear con-
vective system (QLCS) that affected North Carolina by 0300 UTC, despite a slight northward displacement 
bias relative to the MRMS CREF observations. Both GLM experiments overestimate the maximum CREF 
(Figures 14c and 14e), which accounts for the 6-hr QPF overestimation (Figures 15c and 15e). Despite good 
radar coverage, the GLM DA is still able to add benefit to the QPF further by adjusting the moisture (Fierro 
et al., 2014), especially across the South Carolina/North Carolina border (Figures 15c and 15e).

Figure 13.  As in Figure 11 but for 11 May 2020.
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5.  Summary and Future Work
To better leverage the spatially uniform and high temporal frequency total lightning data provided by the 
GOES-16/17 GLM toward short term forecasting of convective events, this work analyses real time, convec-
tion-allowing, CONUS-scale DA simulations performed during the 5-week period of the 2020 SFE. These 
experiments were designed to mimic the operational settings of the HRRRv4 by using the same version 
of the WRF-ARW forecast model and same physics suite adopted in the HRRRv4. With the chief goal of 
gauging the added benefit of GLM lightning data over conventional WSR-88D radar data during the DA, 
this work assessed short-term (≤6h) rainfall forecast skill over the whole CONUS for a total of 29 forecast 
days, with a particular emphasis geared toward areas characterized by poorer radar coverage (i.e., western 
one third of the CONUS). Toward this goal, four experiments were devised: the GLM (assimilating GLM 
lightning data only), RAD (assimilating radar data only), GLM + RAD (assimilating both GLM lightning 
and radar data) and the no DA or “reference” experiment (REF). Because the experiments were intended 
to mimic operational settings of the HRRRv4, REF already contains, by design, blended information from 
a broad array of observing platforms (including lightning and radar) inherited from the RAPv5 background 
data. The QPF evaluation was performed against NCEP's Stage IV rainfall estimates.

During the 5-week SFE period, significantly larger amount of precipitation occurred over the radar-rich 
eastern two thirds of the CONUS compared to the radar-poor western one third region of the CONUS. 

Figure 14.  As in Figure 10 but for 6 May 2020 at 3-hr forecast.
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Contingency elements and associated score metrics aggregated over all 29 forecast days show a general 
improvement in forecast skill over REF for all DA runs; with the best results obtained for GLM + RAD. 
These improvements were noted despite a generally good performance of REF, which is attributed to the 
usage of the RAPv5 dataset to derive its background fields. Despite this improvement in skill, the GLM-
based DA runs produced overall larger-than-observed precipitation amounts over the eastern two thirds of 
CONUS, which was characterized by abundant lightning activity during the DA period (2300–0000 UTC) 
relative to the western one third of CONUS. Over the west, notably less rainfall was produced by the GLM 
experiments, with amounts generally remaining in closer agreement with the observations when taking 
into account underestimates in observed rainfall amounts due to beam blockage.

The performance of the GLM based runs was also assessed by means of Hovmöller diagrams for rainfall and 
through a more detailed examination of three illustrative individual cases: two in radar data sparse regions 
over the west (30 April and 11 May) and one over the radar-richer regions of the east (6 May). All demon-
strated that, despite an overestimation of rainfall amounts over the eastern CONUS, the GLM helped alle-
viate some of the systematic underestimates in 1–3 hr QPFs over the western CONUS (i.e., west of 121°W) 
and produced the smallest NMSE overall. The simultaneous overestimation of the QPFs over the eastern 
two thirds and underestimation over the western CONUS, however, illustrates the inherent challenges in 
deriving an optimal observation operator for lightning assimilation when solely considering adjustments to 
the background water vapor mass mixing ratio.

Figure 15.  As in Figure 11 but for 6 May 2020.
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As a potential remedy, future research efforts should consider resorting to another LDA strategy and/or al-
ternative lightning observations operators with focus on those able to assimilate zero lightning observations 
(e.g., Kong et al., 2020). Additionally, these research efforts should take into consideration the areal extent 
of flashes by assimilating the flash extent density, and/or combine the GLM with additional datasets to help 
better address the development of spurious convection during the DA.

Data Availability Statement
For this work, the GLM data were retrieved from tape archives available on high performance computing 
resources (HPCs) at NOAA but could also be obtained publicly from multiple public sources (e.g., Compre-
hensive Large Array-data Stewardship System or CLASS, NOAA, 2020). Similarly, The WSR-88D Level-II 
data (reflectivity factor and radial velocity) used during the assimilation were made available in real time on 
NOAA HPCs but are made freely accessible to the public by the National Center of Environmental informa-
tion at http://www.ncdc.noaa.gov/. The Stage IV QPF data are publicly available at https://www.eol.ucar.
edu. All data and source codes generated in the work are stored locally on NOAA (NSSL) and OU computers 
for at least 3 years after the project has concluded, as require by NOAA. The WRF source code (Skamaro-
ck & Klemp,  2008; Skamarock et  al.,  2008) is made publicly available by NCAR/UCAR (https://github.
com/wrf-model/WRF) and the developmental NEWS3DVAR software (Gao et al., 2013; Wang et al., 2019; 
Hu et al., 2020) can be made available to interested collaborators by contacting Yunheng Wang (Yunheng.
Wang@noaa.gov) or obtained directly at https://bitbucket.org/newe3dvar/newe3dvar/src/develop. Owing 
to the large size (∼65Tb) of all the simulation output files used, a subset of these data is freely provided to 
any interested researchers and collaborators as netCDF files through the following ftp link: ftp.nssl.noaa.
gov:/users/yhwang/GLM/.
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